111,928 research outputs found

    Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law

    Full text link
    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields.We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfv\`enic flows. We find that this mechanism is only relevant in a high β\beta plasma. However, the Hall parameter ωcτei\omega_c \tau_{ei} can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system

    Some implications of sampling choices on comparisons between satellite and model aerosol optical depth fields

    Get PDF
    The comparison of satellite and model aerosol optical depth (AOD) fields provides useful information on the strengths and weaknesses of both. However, the sampling of satellite and models is very different and some subjective decisions about data selection and aggregation must be made in order to perform such comparisons. This work examines some implications of these decisions, using GlobAerosol AOD retrievals at 550 nm from Advanced Along-Track Scanning Radiometer (AATSR) measurements, and aerosol fields from the GEOS-Chem chemistry transport model. It is recommended to sample the model only where the satellite flies over on a particular day; neglecting this can cause regional differences in model AOD of up to 0.1 on monthly and annual timescales. The comparison is observed to depend strongly upon thresholds for sparsity of satellite retrievals in the model grid cells. Requiring at least 25% coverage of the model grid cell by satellite data decreases the observed difference between the two by approximately half over land. The impact over ocean is smaller. In both model and satellite datasets, there is an anticorrelation between the proportion <i>p</i> of a model grid cell covered by satellite retrievals and the AOD. This is attributed to small <i>p</i> typically occuring due to high cloud cover and lower AODs being found in large clear-sky regions. Daily median AATSR AODs were found to be closer to GEOS-Chem AODs than daily means (with the root mean squared difference being approximately 0.05 smaller). This is due to the decreased sensitivity of medians to outliers such as cloud-contaminated retrievals, or aerosol point sources not included in the model

    Electromagnetic contribution to charge symmetry violation in parton distributions

    Get PDF
    We report a calculation of the combined effect of photon radiation and quark mass differences on charge symmetry violation (CSV) in the parton distribution functions of the nucleon. Following a recent suggestion of Martin and Ryskin, the initial photon distribution is calculated in terms of coherent radiation from the proton as a whole, while the effect of the quark mass difference is based on a recent lattice QCD simulation. The distributions are then evolved to a scale at which they can be compared with experiment by including both QCD and QED radiation. Overall, at a scale of 5 GeV2^2, the total CSV effect on the phenomenologically important difference between the dd and uu-quark distributions is some 20\% larger than the value based on quark mass differences alone. In total these sources of CSV account for approximately 40\% of the NuTeV anomaly.Comment: 5 pages, 2 figure

    The effect of non-linear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas

    Full text link
    With the aid of large-scale three-dimensional QED-PIC simulations, we describe a realistic experimental configuration to measure collective effects that couple strong field quantum electrodynamics to plasma kinetics. For two counter propagating lasers interacting with a foil at intensities exceeding 102210^{22} Wcm2^{-2}, a binary result occurs; when quantum effects are included, a foil that classically would effectively transmit the laser pulse becomes opaque. This is a dramatic change in plasma behavior, directly as a consequence of the coupling of radiation reaction and pair production to plasma dynamics

    The Extended Power Law as Intrinsic Signature For a Black Hole

    Get PDF
    We analyze the exact general relativistic exact integro-differential equation of radiative transfer describing the interaction of low energy photons with a Maxwellian distribution of hot electrons in gravitational field of a Schwarzschild black hole. We prove that due to Comptonization an initial arbitrary spectrum of low energy photons unavoidably results in spectra characterized by an extended power-law feature. We examine the spectral index by using both analytical and numerical methods for a variety of physical parameters as such the plasma temperature and the mass accretion rate. The presence of the event horizon as well as the behaviour of the null geodesics in its vicinity largely determine the dependence of the spectral index on the flow parameters. We come to the conclusion that the bulk motion of a converging flow is more efficient in upscattering photons than thermal Comptonization provided that the electron temperature in the flow is of order of a few keV or less. In this case, the spectrum observed at infinity consists of a soft component produced by those input photons that escape after a few scatterings without any significant energy change and of hard component (described by a power law) produced by the photons that underwent significant upscattering. The luminosity of the power-law component is relatively small compared to that of the soft component. For accretion into black hole the spectral energy index of the power-law is always higher than one for plasma temperature of order of a few keV. This result suggests that the bulk motion Comptonization might be responsible for the power-law spectra seen in the black-hole X-ray sources.Comment: 31 pages, 3 figures; Astrophysical Journal accepte

    Suppression of complete fusion due to breakup in the reactions 10,11^{10,11}B + 209^{209}Bi

    Full text link
    Above-barrier cross sections of α\alpha-active heavy reaction products, as well as fission, were measured for the reactions of 10,11^{10,11}B with 209^{209}Bi. Detailed analysis showed that the heavy products include components from incomplete fusion as well as complete fusion (CF), but fission originates almost exclusively from CF. Compared with fusion calculations without breakup, the CF cross sections are suppressed by 15% for 10^{10}B and 7% for 11^{11}B. A consistent and systematic variation of the suppression of CF for reactions of the weakly bound nuclei 6,7^{6,7}Li, 9^{9}Be, 10,11^{10,11}B on targets of 208^{208}Pb and 209^{209}Bi is found as a function of the breakup threshold energy
    corecore